Termination w.r.t. Q of the following Term Rewriting System could be proven:

Q restricted rewrite system:
The TRS R consists of the following rules:

U11(tt, V1, V2) → U12(isNat(activate(V1)), activate(V2))
U12(tt, V2) → U13(isNat(activate(V2)))
U13(tt) → tt
U21(tt, V1) → U22(isNat(activate(V1)))
U22(tt) → tt
U31(tt, N) → activate(N)
U41(tt, M, N) → s(plus(activate(N), activate(M)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(and(isNatKind(activate(V1)), n__isNatKind(activate(V2))), activate(V1), activate(V2))
isNat(n__s(V1)) → U21(isNatKind(activate(V1)), activate(V1))
isNatKind(n__0) → tt
isNatKind(n__plus(V1, V2)) → and(isNatKind(activate(V1)), n__isNatKind(activate(V2)))
isNatKind(n__s(V1)) → isNatKind(activate(V1))
plus(N, 0) → U31(and(isNat(N), n__isNatKind(N)), N)
plus(N, s(M)) → U41(and(and(isNat(M), n__isNatKind(M)), n__and(n__isNat(N), n__isNatKind(N))), M, N)
0n__0
plus(X1, X2) → n__plus(X1, X2)
isNatKind(X) → n__isNatKind(X)
s(X) → n__s(X)
and(X1, X2) → n__and(X1, X2)
isNat(X) → n__isNat(X)
activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(activate(X1), activate(X2))
activate(n__isNatKind(X)) → isNatKind(X)
activate(n__s(X)) → s(activate(X))
activate(n__and(X1, X2)) → and(activate(X1), X2)
activate(n__isNat(X)) → isNat(X)
activate(X) → X

Q is empty.


QTRS
  ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

U11(tt, V1, V2) → U12(isNat(activate(V1)), activate(V2))
U12(tt, V2) → U13(isNat(activate(V2)))
U13(tt) → tt
U21(tt, V1) → U22(isNat(activate(V1)))
U22(tt) → tt
U31(tt, N) → activate(N)
U41(tt, M, N) → s(plus(activate(N), activate(M)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(and(isNatKind(activate(V1)), n__isNatKind(activate(V2))), activate(V1), activate(V2))
isNat(n__s(V1)) → U21(isNatKind(activate(V1)), activate(V1))
isNatKind(n__0) → tt
isNatKind(n__plus(V1, V2)) → and(isNatKind(activate(V1)), n__isNatKind(activate(V2)))
isNatKind(n__s(V1)) → isNatKind(activate(V1))
plus(N, 0) → U31(and(isNat(N), n__isNatKind(N)), N)
plus(N, s(M)) → U41(and(and(isNat(M), n__isNatKind(M)), n__and(n__isNat(N), n__isNatKind(N))), M, N)
0n__0
plus(X1, X2) → n__plus(X1, X2)
isNatKind(X) → n__isNatKind(X)
s(X) → n__s(X)
and(X1, X2) → n__and(X1, X2)
isNat(X) → n__isNat(X)
activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(activate(X1), activate(X2))
activate(n__isNatKind(X)) → isNatKind(X)
activate(n__s(X)) → s(activate(X))
activate(n__and(X1, X2)) → and(activate(X1), X2)
activate(n__isNat(X)) → isNat(X)
activate(X) → X

Q is empty.

Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

ISNAT(n__s(V1)) → ISNATKIND(activate(V1))
U111(tt, V1, V2) → ACTIVATE(V2)
U121(tt, V2) → ACTIVATE(V2)
PLUS(N, s(M)) → ISNAT(M)
U411(tt, M, N) → PLUS(activate(N), activate(M))
PLUS(N, 0) → AND(isNat(N), n__isNatKind(N))
ISNATKIND(n__plus(V1, V2)) → ACTIVATE(V1)
ISNATKIND(n__plus(V1, V2)) → AND(isNatKind(activate(V1)), n__isNatKind(activate(V2)))
U211(tt, V1) → U221(isNat(activate(V1)))
ACTIVATE(n__and(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__s(X)) → ACTIVATE(X)
U311(tt, N) → ACTIVATE(N)
U111(tt, V1, V2) → U121(isNat(activate(V1)), activate(V2))
ACTIVATE(n__0) → 01
ISNATKIND(n__s(V1)) → ACTIVATE(V1)
U121(tt, V2) → ISNAT(activate(V2))
ISNATKIND(n__s(V1)) → ISNATKIND(activate(V1))
ISNAT(n__plus(V1, V2)) → U111(and(isNatKind(activate(V1)), n__isNatKind(activate(V2))), activate(V1), activate(V2))
ACTIVATE(n__plus(X1, X2)) → PLUS(activate(X1), activate(X2))
ISNAT(n__plus(V1, V2)) → ISNATKIND(activate(V1))
U411(tt, M, N) → ACTIVATE(N)
ACTIVATE(n__plus(X1, X2)) → ACTIVATE(X1)
PLUS(N, 0) → ISNAT(N)
ISNATKIND(n__plus(V1, V2)) → ISNATKIND(activate(V1))
ACTIVATE(n__and(X1, X2)) → AND(activate(X1), X2)
U111(tt, V1, V2) → ISNAT(activate(V1))
U411(tt, M, N) → ACTIVATE(M)
ACTIVATE(n__s(X)) → S(activate(X))
ISNATKIND(n__plus(V1, V2)) → ACTIVATE(V2)
AND(tt, X) → ACTIVATE(X)
ISNAT(n__plus(V1, V2)) → ACTIVATE(V2)
ISNAT(n__s(V1)) → ACTIVATE(V1)
U111(tt, V1, V2) → ACTIVATE(V1)
U121(tt, V2) → U131(isNat(activate(V2)))
U211(tt, V1) → ACTIVATE(V1)
U411(tt, M, N) → S(plus(activate(N), activate(M)))
ISNAT(n__plus(V1, V2)) → ACTIVATE(V1)
PLUS(N, s(M)) → AND(and(isNat(M), n__isNatKind(M)), n__and(n__isNat(N), n__isNatKind(N)))
ACTIVATE(n__isNat(X)) → ISNAT(X)
ACTIVATE(n__isNatKind(X)) → ISNATKIND(X)
PLUS(N, s(M)) → U411(and(and(isNat(M), n__isNatKind(M)), n__and(n__isNat(N), n__isNatKind(N))), M, N)
U211(tt, V1) → ISNAT(activate(V1))
ISNAT(n__s(V1)) → U211(isNatKind(activate(V1)), activate(V1))
ACTIVATE(n__plus(X1, X2)) → ACTIVATE(X2)
PLUS(N, s(M)) → AND(isNat(M), n__isNatKind(M))
ISNAT(n__plus(V1, V2)) → AND(isNatKind(activate(V1)), n__isNatKind(activate(V2)))
PLUS(N, 0) → U311(and(isNat(N), n__isNatKind(N)), N)

The TRS R consists of the following rules:

U11(tt, V1, V2) → U12(isNat(activate(V1)), activate(V2))
U12(tt, V2) → U13(isNat(activate(V2)))
U13(tt) → tt
U21(tt, V1) → U22(isNat(activate(V1)))
U22(tt) → tt
U31(tt, N) → activate(N)
U41(tt, M, N) → s(plus(activate(N), activate(M)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(and(isNatKind(activate(V1)), n__isNatKind(activate(V2))), activate(V1), activate(V2))
isNat(n__s(V1)) → U21(isNatKind(activate(V1)), activate(V1))
isNatKind(n__0) → tt
isNatKind(n__plus(V1, V2)) → and(isNatKind(activate(V1)), n__isNatKind(activate(V2)))
isNatKind(n__s(V1)) → isNatKind(activate(V1))
plus(N, 0) → U31(and(isNat(N), n__isNatKind(N)), N)
plus(N, s(M)) → U41(and(and(isNat(M), n__isNatKind(M)), n__and(n__isNat(N), n__isNatKind(N))), M, N)
0n__0
plus(X1, X2) → n__plus(X1, X2)
isNatKind(X) → n__isNatKind(X)
s(X) → n__s(X)
and(X1, X2) → n__and(X1, X2)
isNat(X) → n__isNat(X)
activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(activate(X1), activate(X2))
activate(n__isNatKind(X)) → isNatKind(X)
activate(n__s(X)) → s(activate(X))
activate(n__and(X1, X2)) → and(activate(X1), X2)
activate(n__isNat(X)) → isNat(X)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
QDP
      ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

ISNAT(n__s(V1)) → ISNATKIND(activate(V1))
U111(tt, V1, V2) → ACTIVATE(V2)
U121(tt, V2) → ACTIVATE(V2)
PLUS(N, s(M)) → ISNAT(M)
U411(tt, M, N) → PLUS(activate(N), activate(M))
PLUS(N, 0) → AND(isNat(N), n__isNatKind(N))
ISNATKIND(n__plus(V1, V2)) → ACTIVATE(V1)
ISNATKIND(n__plus(V1, V2)) → AND(isNatKind(activate(V1)), n__isNatKind(activate(V2)))
U211(tt, V1) → U221(isNat(activate(V1)))
ACTIVATE(n__and(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__s(X)) → ACTIVATE(X)
U311(tt, N) → ACTIVATE(N)
U111(tt, V1, V2) → U121(isNat(activate(V1)), activate(V2))
ACTIVATE(n__0) → 01
ISNATKIND(n__s(V1)) → ACTIVATE(V1)
U121(tt, V2) → ISNAT(activate(V2))
ISNATKIND(n__s(V1)) → ISNATKIND(activate(V1))
ISNAT(n__plus(V1, V2)) → U111(and(isNatKind(activate(V1)), n__isNatKind(activate(V2))), activate(V1), activate(V2))
ACTIVATE(n__plus(X1, X2)) → PLUS(activate(X1), activate(X2))
ISNAT(n__plus(V1, V2)) → ISNATKIND(activate(V1))
U411(tt, M, N) → ACTIVATE(N)
ACTIVATE(n__plus(X1, X2)) → ACTIVATE(X1)
PLUS(N, 0) → ISNAT(N)
ISNATKIND(n__plus(V1, V2)) → ISNATKIND(activate(V1))
ACTIVATE(n__and(X1, X2)) → AND(activate(X1), X2)
U111(tt, V1, V2) → ISNAT(activate(V1))
U411(tt, M, N) → ACTIVATE(M)
ACTIVATE(n__s(X)) → S(activate(X))
ISNATKIND(n__plus(V1, V2)) → ACTIVATE(V2)
AND(tt, X) → ACTIVATE(X)
ISNAT(n__plus(V1, V2)) → ACTIVATE(V2)
ISNAT(n__s(V1)) → ACTIVATE(V1)
U111(tt, V1, V2) → ACTIVATE(V1)
U121(tt, V2) → U131(isNat(activate(V2)))
U211(tt, V1) → ACTIVATE(V1)
U411(tt, M, N) → S(plus(activate(N), activate(M)))
ISNAT(n__plus(V1, V2)) → ACTIVATE(V1)
PLUS(N, s(M)) → AND(and(isNat(M), n__isNatKind(M)), n__and(n__isNat(N), n__isNatKind(N)))
ACTIVATE(n__isNat(X)) → ISNAT(X)
ACTIVATE(n__isNatKind(X)) → ISNATKIND(X)
PLUS(N, s(M)) → U411(and(and(isNat(M), n__isNatKind(M)), n__and(n__isNat(N), n__isNatKind(N))), M, N)
U211(tt, V1) → ISNAT(activate(V1))
ISNAT(n__s(V1)) → U211(isNatKind(activate(V1)), activate(V1))
ACTIVATE(n__plus(X1, X2)) → ACTIVATE(X2)
PLUS(N, s(M)) → AND(isNat(M), n__isNatKind(M))
ISNAT(n__plus(V1, V2)) → AND(isNatKind(activate(V1)), n__isNatKind(activate(V2)))
PLUS(N, 0) → U311(and(isNat(N), n__isNatKind(N)), N)

The TRS R consists of the following rules:

U11(tt, V1, V2) → U12(isNat(activate(V1)), activate(V2))
U12(tt, V2) → U13(isNat(activate(V2)))
U13(tt) → tt
U21(tt, V1) → U22(isNat(activate(V1)))
U22(tt) → tt
U31(tt, N) → activate(N)
U41(tt, M, N) → s(plus(activate(N), activate(M)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(and(isNatKind(activate(V1)), n__isNatKind(activate(V2))), activate(V1), activate(V2))
isNat(n__s(V1)) → U21(isNatKind(activate(V1)), activate(V1))
isNatKind(n__0) → tt
isNatKind(n__plus(V1, V2)) → and(isNatKind(activate(V1)), n__isNatKind(activate(V2)))
isNatKind(n__s(V1)) → isNatKind(activate(V1))
plus(N, 0) → U31(and(isNat(N), n__isNatKind(N)), N)
plus(N, s(M)) → U41(and(and(isNat(M), n__isNatKind(M)), n__and(n__isNat(N), n__isNatKind(N))), M, N)
0n__0
plus(X1, X2) → n__plus(X1, X2)
isNatKind(X) → n__isNatKind(X)
s(X) → n__s(X)
and(X1, X2) → n__and(X1, X2)
isNat(X) → n__isNat(X)
activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(activate(X1), activate(X2))
activate(n__isNatKind(X)) → isNatKind(X)
activate(n__s(X)) → s(activate(X))
activate(n__and(X1, X2)) → and(activate(X1), X2)
activate(n__isNat(X)) → isNat(X)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 5 less nodes.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
QDP
          ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

ISNAT(n__s(V1)) → ISNATKIND(activate(V1))
U111(tt, V1, V2) → ACTIVATE(V2)
U121(tt, V2) → ACTIVATE(V2)
PLUS(N, s(M)) → ISNAT(M)
U411(tt, M, N) → PLUS(activate(N), activate(M))
PLUS(N, 0) → AND(isNat(N), n__isNatKind(N))
ISNATKIND(n__plus(V1, V2)) → ACTIVATE(V1)
ISNATKIND(n__plus(V1, V2)) → AND(isNatKind(activate(V1)), n__isNatKind(activate(V2)))
ACTIVATE(n__s(X)) → ACTIVATE(X)
ACTIVATE(n__and(X1, X2)) → ACTIVATE(X1)
U311(tt, N) → ACTIVATE(N)
U111(tt, V1, V2) → U121(isNat(activate(V1)), activate(V2))
U121(tt, V2) → ISNAT(activate(V2))
ISNATKIND(n__s(V1)) → ACTIVATE(V1)
ISNAT(n__plus(V1, V2)) → U111(and(isNatKind(activate(V1)), n__isNatKind(activate(V2))), activate(V1), activate(V2))
ISNATKIND(n__s(V1)) → ISNATKIND(activate(V1))
ACTIVATE(n__plus(X1, X2)) → PLUS(activate(X1), activate(X2))
ISNAT(n__plus(V1, V2)) → ISNATKIND(activate(V1))
U411(tt, M, N) → ACTIVATE(N)
ACTIVATE(n__plus(X1, X2)) → ACTIVATE(X1)
PLUS(N, 0) → ISNAT(N)
ISNATKIND(n__plus(V1, V2)) → ISNATKIND(activate(V1))
U111(tt, V1, V2) → ISNAT(activate(V1))
ACTIVATE(n__and(X1, X2)) → AND(activate(X1), X2)
U411(tt, M, N) → ACTIVATE(M)
ISNATKIND(n__plus(V1, V2)) → ACTIVATE(V2)
ISNAT(n__s(V1)) → ACTIVATE(V1)
AND(tt, X) → ACTIVATE(X)
ISNAT(n__plus(V1, V2)) → ACTIVATE(V2)
U111(tt, V1, V2) → ACTIVATE(V1)
U211(tt, V1) → ACTIVATE(V1)
ISNAT(n__plus(V1, V2)) → ACTIVATE(V1)
PLUS(N, s(M)) → AND(and(isNat(M), n__isNatKind(M)), n__and(n__isNat(N), n__isNatKind(N)))
ACTIVATE(n__isNatKind(X)) → ISNATKIND(X)
ACTIVATE(n__isNat(X)) → ISNAT(X)
PLUS(N, s(M)) → U411(and(and(isNat(M), n__isNatKind(M)), n__and(n__isNat(N), n__isNatKind(N))), M, N)
U211(tt, V1) → ISNAT(activate(V1))
ISNAT(n__s(V1)) → U211(isNatKind(activate(V1)), activate(V1))
ACTIVATE(n__plus(X1, X2)) → ACTIVATE(X2)
PLUS(N, s(M)) → AND(isNat(M), n__isNatKind(M))
ISNAT(n__plus(V1, V2)) → AND(isNatKind(activate(V1)), n__isNatKind(activate(V2)))
PLUS(N, 0) → U311(and(isNat(N), n__isNatKind(N)), N)

The TRS R consists of the following rules:

U11(tt, V1, V2) → U12(isNat(activate(V1)), activate(V2))
U12(tt, V2) → U13(isNat(activate(V2)))
U13(tt) → tt
U21(tt, V1) → U22(isNat(activate(V1)))
U22(tt) → tt
U31(tt, N) → activate(N)
U41(tt, M, N) → s(plus(activate(N), activate(M)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(and(isNatKind(activate(V1)), n__isNatKind(activate(V2))), activate(V1), activate(V2))
isNat(n__s(V1)) → U21(isNatKind(activate(V1)), activate(V1))
isNatKind(n__0) → tt
isNatKind(n__plus(V1, V2)) → and(isNatKind(activate(V1)), n__isNatKind(activate(V2)))
isNatKind(n__s(V1)) → isNatKind(activate(V1))
plus(N, 0) → U31(and(isNat(N), n__isNatKind(N)), N)
plus(N, s(M)) → U41(and(and(isNat(M), n__isNatKind(M)), n__and(n__isNat(N), n__isNatKind(N))), M, N)
0n__0
plus(X1, X2) → n__plus(X1, X2)
isNatKind(X) → n__isNatKind(X)
s(X) → n__s(X)
and(X1, X2) → n__and(X1, X2)
isNat(X) → n__isNat(X)
activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(activate(X1), activate(X2))
activate(n__isNatKind(X)) → isNatKind(X)
activate(n__s(X)) → s(activate(X))
activate(n__and(X1, X2)) → and(activate(X1), X2)
activate(n__isNat(X)) → isNat(X)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


U111(tt, V1, V2) → ACTIVATE(V2)
PLUS(N, s(M)) → ISNAT(M)
PLUS(N, 0) → AND(isNat(N), n__isNatKind(N))
ISNATKIND(n__plus(V1, V2)) → ACTIVATE(V1)
ISNATKIND(n__plus(V1, V2)) → AND(isNatKind(activate(V1)), n__isNatKind(activate(V2)))
ACTIVATE(n__s(X)) → ACTIVATE(X)
ACTIVATE(n__and(X1, X2)) → ACTIVATE(X1)
U111(tt, V1, V2) → U121(isNat(activate(V1)), activate(V2))
U121(tt, V2) → ISNAT(activate(V2))
ISNATKIND(n__s(V1)) → ACTIVATE(V1)
ISNAT(n__plus(V1, V2)) → U111(and(isNatKind(activate(V1)), n__isNatKind(activate(V2))), activate(V1), activate(V2))
ISNATKIND(n__s(V1)) → ISNATKIND(activate(V1))
ACTIVATE(n__plus(X1, X2)) → PLUS(activate(X1), activate(X2))
ISNAT(n__plus(V1, V2)) → ISNATKIND(activate(V1))
U411(tt, M, N) → ACTIVATE(N)
ACTIVATE(n__plus(X1, X2)) → ACTIVATE(X1)
PLUS(N, 0) → ISNAT(N)
ISNATKIND(n__plus(V1, V2)) → ISNATKIND(activate(V1))
U111(tt, V1, V2) → ISNAT(activate(V1))
ACTIVATE(n__and(X1, X2)) → AND(activate(X1), X2)
U411(tt, M, N) → ACTIVATE(M)
ISNATKIND(n__plus(V1, V2)) → ACTIVATE(V2)
ISNAT(n__plus(V1, V2)) → ACTIVATE(V2)
U111(tt, V1, V2) → ACTIVATE(V1)
ISNAT(n__plus(V1, V2)) → ACTIVATE(V1)
PLUS(N, s(M)) → AND(and(isNat(M), n__isNatKind(M)), n__and(n__isNat(N), n__isNatKind(N)))
ACTIVATE(n__isNat(X)) → ISNAT(X)
PLUS(N, s(M)) → U411(and(and(isNat(M), n__isNatKind(M)), n__and(n__isNat(N), n__isNatKind(N))), M, N)
U211(tt, V1) → ISNAT(activate(V1))
ACTIVATE(n__plus(X1, X2)) → ACTIVATE(X2)
PLUS(N, s(M)) → AND(isNat(M), n__isNatKind(M))
ISNAT(n__plus(V1, V2)) → AND(isNatKind(activate(V1)), n__isNatKind(activate(V2)))
PLUS(N, 0) → U311(and(isNat(N), n__isNatKind(N)), N)
The remaining pairs can at least be oriented weakly.

ISNAT(n__s(V1)) → ISNATKIND(activate(V1))
U121(tt, V2) → ACTIVATE(V2)
U411(tt, M, N) → PLUS(activate(N), activate(M))
U311(tt, N) → ACTIVATE(N)
ISNAT(n__s(V1)) → ACTIVATE(V1)
AND(tt, X) → ACTIVATE(X)
U211(tt, V1) → ACTIVATE(V1)
ACTIVATE(n__isNatKind(X)) → ISNATKIND(X)
ISNAT(n__s(V1)) → U211(isNatKind(activate(V1)), activate(V1))
Used ordering: Combined order from the following AFS and order.
ISNAT(x1)  =  x1
n__s(x1)  =  n__s(x1)
ISNATKIND(x1)  =  ISNATKIND(x1)
activate(x1)  =  x1
U111(x1, x2, x3)  =  U111(x1, x2, x3)
tt  =  tt
ACTIVATE(x1)  =  ACTIVATE(x1)
U121(x1, x2)  =  U121(x2)
PLUS(x1, x2)  =  PLUS(x1, x2)
s(x1)  =  s(x1)
U411(x1, x2, x3)  =  U411(x2, x3)
0  =  0
AND(x1, x2)  =  AND(x2)
isNat(x1)  =  x1
n__isNatKind(x1)  =  x1
n__plus(x1, x2)  =  n__plus(x1, x2)
isNatKind(x1)  =  x1
n__and(x1, x2)  =  n__and(x1, x2)
U311(x1, x2)  =  U311(x2)
and(x1, x2)  =  and(x1, x2)
U211(x1, x2)  =  U211(x2)
n__isNat(x1)  =  x1
U12(x1, x2)  =  U12(x1, x2)
U13(x1)  =  U13(x1)
U11(x1, x2, x3)  =  U11(x2, x3)
U21(x1, x2)  =  U21(x2)
U22(x1)  =  x1
n__0  =  n__0
U41(x1, x2, x3)  =  U41(x1, x2, x3)
plus(x1, x2)  =  plus(x1, x2)
U31(x1, x2)  =  U31(x1, x2)

Recursive path order with status [2].
Quasi-Precedence:
[nplus2, U413, plus2] > [PLUS2, U41^12] > [ns1, ISNATKIND1, U11^13, tt, ACTIVATE1, U12^11, s1, 0, AND1, nand2, U31^11, and2, U21^11, U211, n0]
[nplus2, U413, plus2] > U112 > [U122, U131] > [ns1, ISNATKIND1, U11^13, tt, ACTIVATE1, U12^11, s1, 0, AND1, nand2, U31^11, and2, U21^11, U211, n0]
[nplus2, U413, plus2] > U312 > [ns1, ISNATKIND1, U11^13, tt, ACTIVATE1, U12^11, s1, 0, AND1, nand2, U31^11, and2, U21^11, U211, n0]

Status:
nplus2: [2,1]
U413: [2,3,1]
U31^11: multiset
U122: [2,1]
ns1: multiset
and2: multiset
PLUS2: multiset
tt: multiset
s1: multiset
ACTIVATE1: multiset
plus2: [2,1]
U312: multiset
AND1: multiset
ISNATKIND1: multiset
U11^13: multiset
U112: multiset
0: multiset
nand2: multiset
U12^11: multiset
U41^12: multiset
n0: multiset
U131: [1]
U21^11: multiset
U211: multiset


The following usable rules [17] were oriented:

U12(tt, V2) → U13(isNat(activate(V2)))
U11(tt, V1, V2) → U12(isNat(activate(V1)), activate(V2))
U21(tt, V1) → U22(isNat(activate(V1)))
U13(tt) → tt
isNat(n__s(V1)) → U21(isNatKind(activate(V1)), activate(V1))
isNatKind(n__0) → tt
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(and(isNatKind(activate(V1)), n__isNatKind(activate(V2))), activate(V1), activate(V2))
U41(tt, M, N) → s(plus(activate(N), activate(M)))
U22(tt) → tt
isNatKind(X) → n__isNatKind(X)
s(X) → n__s(X)
0n__0
plus(X1, X2) → n__plus(X1, X2)
plus(N, s(M)) → U41(and(and(isNat(M), n__isNatKind(M)), n__and(n__isNat(N), n__isNatKind(N))), M, N)
activate(n__isNat(X)) → isNat(X)
activate(n__s(X)) → s(activate(X))
activate(n__plus(X1, X2)) → plus(activate(X1), activate(X2))
isNatKind(n__s(V1)) → isNatKind(activate(V1))
activate(n__and(X1, X2)) → and(activate(X1), X2)
and(tt, X) → activate(X)
U31(tt, N) → activate(N)
plus(N, 0) → U31(and(isNat(N), n__isNatKind(N)), N)
isNatKind(n__plus(V1, V2)) → and(isNatKind(activate(V1)), n__isNatKind(activate(V2)))
activate(n__isNatKind(X)) → isNatKind(X)
activate(n__0) → 0
isNat(X) → n__isNat(X)
and(X1, X2) → n__and(X1, X2)
activate(X) → X



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ QDPOrderProof
QDP
              ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

U311(tt, N) → ACTIVATE(N)
ISNAT(n__s(V1)) → ISNATKIND(activate(V1))
U121(tt, V2) → ACTIVATE(V2)
ACTIVATE(n__isNatKind(X)) → ISNATKIND(X)
ISNAT(n__s(V1)) → U211(isNatKind(activate(V1)), activate(V1))
U411(tt, M, N) → PLUS(activate(N), activate(M))
AND(tt, X) → ACTIVATE(X)
ISNAT(n__s(V1)) → ACTIVATE(V1)
U211(tt, V1) → ACTIVATE(V1)

The TRS R consists of the following rules:

U11(tt, V1, V2) → U12(isNat(activate(V1)), activate(V2))
U12(tt, V2) → U13(isNat(activate(V2)))
U13(tt) → tt
U21(tt, V1) → U22(isNat(activate(V1)))
U22(tt) → tt
U31(tt, N) → activate(N)
U41(tt, M, N) → s(plus(activate(N), activate(M)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(and(isNatKind(activate(V1)), n__isNatKind(activate(V2))), activate(V1), activate(V2))
isNat(n__s(V1)) → U21(isNatKind(activate(V1)), activate(V1))
isNatKind(n__0) → tt
isNatKind(n__plus(V1, V2)) → and(isNatKind(activate(V1)), n__isNatKind(activate(V2)))
isNatKind(n__s(V1)) → isNatKind(activate(V1))
plus(N, 0) → U31(and(isNat(N), n__isNatKind(N)), N)
plus(N, s(M)) → U41(and(and(isNat(M), n__isNatKind(M)), n__and(n__isNat(N), n__isNatKind(N))), M, N)
0n__0
plus(X1, X2) → n__plus(X1, X2)
isNatKind(X) → n__isNatKind(X)
s(X) → n__s(X)
and(X1, X2) → n__and(X1, X2)
isNat(X) → n__isNat(X)
activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(activate(X1), activate(X2))
activate(n__isNatKind(X)) → isNatKind(X)
activate(n__s(X)) → s(activate(X))
activate(n__and(X1, X2)) → and(activate(X1), X2)
activate(n__isNat(X)) → isNat(X)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 0 SCCs with 9 less nodes.